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Abstract: Secondary upper limb lymphedema, a frequent complication after breast cancer
therapy, can be successfully treated only when it is diagnosed in its early stage. Use of,
otherwise well-established, lymphoscintigraphically supported staging is inhibited by a
slow lymphatic dynamics of upper limbs, which allows a routine collection at most three
images reflecting it. The proposed Bayesian staging methodology, described in the paper,
relies on a simplified accumulation model to get quantitative lymphoscintigraphy and uses
normal probabilistic mixtures for a computerized disease staging that exploits fully the
routinely available information.
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1 INTRODUCTION

Lymphedema, the edema caused by lymphatic system insufficiency, is a chronic disease that is
frequently misdiagnosed, treated too late, or not treated at all. At the same time, the success
and efficacy of its therapy depend strongly on the disease stage. The upper limb lymphedema
often arises as a secondary complication of the breast cancer therapy and axillary lymph node
dissection. The treatment of the breast cancer concerns of asignificant group of patients, for
instance, yearly about 4000 women considering Czech Republiconly. Frequency of the lym-
phedema incidence is relatively high, about 5%-30% (Szubaet al., 2003). This state calls for
an efficient and reliable diagnostic method allowing a safe recognition of early lymphedema
stages.

Besides the basic clinical assessment, lymphoscintigraphyseems to be the adequate sensitive
inspection method already used for judging the state of lymphatic system. The qualitative
evaluation characterizes well lymphatic morphology. On the other hand, the recognition of
treatment-critical latent disease stages is rather difficult (Weissleder and Weissleder, 1988). An
increase of sensitivity and diagnosis accuracy is commonlyexpected from a quantitative eval-
uation. Yet, this expectation has been fulfilled only partially. Slow dynamics of the upper-limb
lymphatic system makes its diagnostics specific. It reducesseverely the number of measure-
ments available for dynamic study that can be routinely taken. The limitation is caused by, al-
ways restricted, time-capacity of the gamma camera as well as by the limited ability of patients
to undergo a sufficiently rich series of inspections within the time interval covering dynamics
of the upper-limb lymphatic system. Consequently, two or three images taken on each limb is
the realistic, routinely accessible, number of images.

The small amount of data available makes a diagnostic inference hard. It also makes the evalu-
ation of traditional physiological indicators very volatile. Consequently, no reliable, clinically
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accepted, quantitative evaluation of the upper-limb lymphoscintigraphy is at disposal. The only
known way to counteract the lack of measured data is a carefulmodeling and data processing.
Inspired by the depot-clearance rate technique (Painet al., 2002) a new method of quantifi-
cation has been proposed in (Gebouský et al., 2003). The depot clearance method models the
dynamics of the colloid accumulation at the injection site only. The discussed approach is based
on modeling of the colloid accumulation within the remaining parts of the limb. The adopted
inspection of the various limb parts respects the evidence that lymphedema may appear locally
within the limb.

Considering the small amount of uncertain data, the use of Bayesian methodology (Berger,
1985) which substitutes lack of data by prior knowledge, appears to be the only viable possibil-
ity. The necessary simplified modeling of the accumulation of the radiotracer within the limbs
drifted by lymphatic flow was done. Processing of the model within the Bayesian decision-
making paradigm resulted in the routinely applicable quantitative lymphoscintigraphy of the
upper limb lymphedema.

Efficiency of the proposed quantification method has alreadybeen confirmed (Gebouský, 2003).
The results indicate that the method increases the diagnosis accuracy. However, the reliable de-
tection of early disease stages cannot be reached without employing all routinely available,
clinical and scintigraphic information. A combination of these disparate information sources
and judging performance of the resulting procedure form thecore of this paper. Specifically,
the paper describes the way of an automatic combination of these disparate data and verifies the
impact of the proposed quantification methodology on the decision about the lymphedema stag-
ing. The discussed combination of such data is based here on an exploitation of probabilistic
mixtures (Ḱarńy et al., 2005) to this purpose.

2 DATA COLLECTED

Each patient underwent both the lymphoscintigraphic and clinical evaluations. The scintigra-
phic data were processed by the referred quantitative methodology (Gebousḱy, 2003) and sup-
plemented by the information characterizing the previous treatment and therapy. The evaluation
extends the qualitative inspection of scintigraphic data,which is already a decisive part of the
routine inspection.

2.1 Clinical Assessment

The data concerning clinical evaluation include categorized therapy history, subjective feelings
of the patient and clinical findings.

2.2 Lymphoscintigraphy

Lymphoscintigraphic inspections were performed for all patients on both upper limbs.

Imaging and Data In all subjects 20 MBq of 99mTc-labeled colloid in the volume 0.1-0.2 ml
was injected subcutaneously into the first and fourth inter-digital web space of each hand. Then
the initial calibrating 60-seconds image of the injection site is acquired. The remaining three
images are routinely obtained within the range 30-180 minutes after administration. The whole
arm is imaged in a supine position. Images of both upper limbsare collected for 60 seconds by
LFOV gamma camera.

For the quantitative evaluation, the regions of interest (ROI) are drawn around the axillary and
supraclaviculary region, the forearm and upper arm. The accumulated activities within ROIs
are characterized by the total integral counts over them. These counts are corrected to the
physical decay of the traces over the inspection period.
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Qualitative Evaluation The trained nuclear-medicine expert bases the qualitativeevaluation of
lymphoscintigraphy on the visual assessment of the images.The expert tries to recognize the
following patterns: the number of visible arm and cubit nodules; the lack of a transit in the
application site; the visibility of the extended lymphaticvena and the existence of dermal back-
flow. The level of the dermal backflow and its local position are differentiated. The outlined
qualitative comparison of scintigraphic images leads to the expert’s assessmentS of the lym-
phedema stage.

3 QUANTIFICATION METHOD

3.1 Radiotracer Accumulation Model

The proposed quantification technique relies on the simplified modeling. It respects the small
amount of available data reflecting the accumulation withinthe predefined ROIs covering fore-
arm, upper arm and axilla.

The relative scintigraphic responses within the individual ROIs are described by discrete-time
input-output dynamic model. The relative scintigraphic response is the time curve of the ac-
tivity of the accumulated colloid normalized by the administered activity when the modeled
system is stimulated by unit impulse. The response (x) forms time activity curve (TAC). Specif-
ically, a cascade of first-order linear models, with a commondynamical parametera for each
of thed sections, and with a common gain parameterb is chosen. It is a flexible compromise
between the need to characterize the complex distributed nature of the lymphatic system and
the need to get a model with a few unknown parameters. TACxt at timet = 0, 1, . . . is related
to the model parameters by the formula:

xt = b

(

t + d − 1

t

)

at, t ≥ 0. (1)

While this expression models the whole response, the measurements are taken only in small
subset of discrete time moments. Noisy samples (yt) of the TAC are observed. The aggregation
of data counts permits to characterize the overall noise effect by the additive zero-mean normal
noise (et), i.e., yt = xt + et. The considered infrequent measurement implies that the noise
samples can be treated as conditionally independent. The normalization implies that the noise
variancer can be assumed approximately constant.

3.2 Prior Information on Model Parameters

The TAC (1) and the additive noiseet are characterized by the unknown parametersΘ =
(a, b, d, r). The noise variancer reflects the measurement process. Thus, for its estimation,
data from various ROIs and patients can be used. The remaining three parameters are strictly
the patient specific. They depend both on the modeled limb andROI and have to be estimated
using the available two or three measurements. This is obviously impossible without prior
information. Its systematic use is the key advantage of the Bayesian paradigm adopted for the
inference on diagnostically significant quantities from the sparse data.

The prior information is rich in the inspected problem and can be expressed through intervals
of a priori possible values ofΘ. Let us list and briefly comment prior information on the
patient-specific parameters:

• d (1 < d ≤ 6) - the parameter describes the penetration rate through thelimb and
modifies the shape of the TAC. Ford = 1, the model would coincide with the exponential
model used for depot clearance method. The chosen upper bound 6 is very conservative
guess.
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• a (0 < a < 1) - the parameter determines model dynamics. The specified interval reflects
the fact that the inspected responses are stable and non-oscillatory. In implementation,
this interval is shrunk to reflect the observed slow accumulation dynamics. Typically
0.9 < a < 0.999: the specific range depends on the orderd.

• b (0 < b < 1) - the parameter describes the model gain. The response is non-negative and
cannot exceed the applied input. Taking into account that noactivity is created within
the limb, a tighter upper bound bmax can be evaluated as a function of the inspected
a, d (Gebousḱy, 2003).

The above information items were converted into a complete prior distribution on the patient-
specific unknown parameters(a, b, d). Since no further detailed information is available for
them, uniform distributions on the above ranges were chosen. This choice can be justified
via the principle of insufficient reasons (Jeffreys, 1985).Sufficient amount of data available
for estimation of the common noise variancer has allowed us to select for its description
computationally advantageous conjugate prior (Berger, 1985).

3.3 Processing of Information Sources

With the measured data, the chosen model and the prior distribution, a relatively straightforward
Bayesian evaluation of posterior distributions (Berger, 1985) provides point estimates as well
as their precisions. The patient-specific parameters as well as the noise-free time activity curve
xt at any discrete time moment are estimated on each individual ROI.

The reconstruction of the TAC motivated the outlined modeling and estimation. The success
in this respect and practical needs turned our attention towards the disease staging, which is
predominantly addressed in this paper. This is a classical difficult pattern-recognition problem
(19). It requires selection of quantifiers (features) that allow reliable differentiating stages of
lymphedema. The estimate of the triple of the patient-specific parameters (for each ROI) is a
natural candidate to this purpose. Besides the estimates of time constant a, the gain b and the
number of sections d shaping TAC, the value and position of theTAC maximum are considered
as quantifiers. They represent the counterpart of the late uptake and appearance time used
in (Weissleder and Weissleder, 1988). The residence time, widely accepted in nuclear medicine
as a quantitative characteristic of accumulation kineticsis tested too. With the adopted scaling,
the residence time in minutes is found as the area under the TAC estimate.

Note that in all cases just point estimates are passed to the further processing described bellow.

4 DISEASE STAGING AND RELEVANCE OF QUANTIFICATION

The computerized support of the staging assessment is the ultimate aim of the discussed data
processing. An algorithm mapping the available patient data on a reliable estimate of the dis-
ease stage is searched for. A justified selection of the significant items within the data record
D containing clinical, qualitative and quantitative scintigraphy results is the most important
sub-problem addressed. Importance of items arising from the proposed quantitative lympho-
scintigraphy is of a special interest.

The combination of clinical, qualitative and quantitativescintigraphy provided recordsD with
41 meaningful data items for each inspected limb. The subjective stagingS, made by scinti-
graphic expert complements the record.

The constructed “staging” algorithm has to cope with sparsedata. Even when we take data
from different limbs attached to different subjective staging we get 176 records, each with 41
explanatory variables and single predicted variable. Thismakes us to use again the Bayesian
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solution of this specific pattern recognition problem. Normal probabilistic mixtures are selected
as the needed probabilistic model relating the unknown stage S to dataD. The following
reasons singled out this model class:

• Probabilistic models “naturally” model discrepancies of experts’ opinion as well as al-
ways partially arbitrary boundaries between respective disease stages. Moreover, the
modeled relationship is stochastic.

• The modeled staging concentrates around nominal discrete values{0, 1, . . . , 4} and the
explanatory data contain continuous-valued entries. Thus, the hard problem of logit re-
gression is faced, e.g. (Albert and Chib, 1993). Such a regression can be, however,
approximated by a normal mixture whenever variances of the individual normal compo-
nents are taken small enough.

• Normal mixtures formally coincide with artificial neural network made of radial ba-
sis functions. This network is known to approximate (almost) any multivariate map-
ping (Haykin, 1994). Thus, normal mixtures suit for the considered exploratory data
analysis.

• Efficient algorithms exist for an approximate Bayesian estimation of normal mixtures,
including estimate of its structure and model validation (Kárńy et al., 2005).

The processing was performed by Jobcontrol system (Tesař and Nov́ak, 2005), which arisen
from a software base Mixtools that covers all major tasks related to mixture estimation.

5 RESULTS & DISCUSSION

The evaluation results concern 88 patients, i.e., 176 limbs. The results are summarized here
in Figure 1. The classification success is measured by the percentage of the coincidence with
expert classificationS.

Columns in figures correspond with a different extent of the exploitation of available explana-
tory data. All means exploitation of all of them.Sci uses combination of data provided by
scintigraphic expert (except of his/her staging) and by thequantitative scintigraphy, i.e., by
numerical characteristics of the estimated model (1).SciKv refers to the use of the later data
only. Cli relies on data provided by clinician.Rest predicts the stage using the combination of
data provided by the scintigraphic expert and data providedby clinician (again except of stag-
ing). Left columns correspond with results obtained when all considered data were used for
estimating the mixtures, which model the relationship of explanatory data to the predicted lym-
phedema stage. Right columns reflect results when using the leave-one-out cross-validation.

Figure 1(a) displays correspondence of the classification by the estimated mixture with that
provided by scintigraphic expert. Figure 1(b) gives up rarely populated higher stages of lym-
phedema and distinguishes just the statements: the limb does not have, 0, and the limb does
have lymphedema, 1.

The results imply the following observations. Use of all scintigraphic explanatory data is the
must. The evaluation of only clinical data or only data from quantitative scintigraphy is in-
sufficient for reliable staging. The overall number of learning data is still too small as it seen
on poorer cross-validation results. This also explains higher robustness of simpler models (All
vs. Sci) or models dealing with discrete-valued data only (Cli). The quality of dichotomy
evaluation is, however, very high.
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Fig. 1: Correspondence of (a) classified stage and (b) classified lymphedema 0/1.

6 CONCLUSIONS

The derived methodology of computerized lymphedema staging confirmed (among other out-
comes) that: (i) Scintigraphic evaluation is necessary forlow-stage cases. (ii) The characteris-
tics of the model (1) are insufficient alone for staging but contributes significantly to qualitative
scintigraphy in the way, which cannot be substituted by clinical evaluations only. (iii) Possi-
bility of a finer computerized staging is indicated but richer data sets will be needed to convert
the possibility into certainty. (iv) Finally, combined data from qualitative and quantitative sci-
ntigraphy can be used for a very reliable indication of lymphedema presence even in early
stage.
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Czech-Slovenian project M̌SMT 8-2006-06 ”Data-driven modelling for decision making sup-
port and process monitoring” attendance on this workshop could be realized.

REFERENCES

Albert, J. and Chib, S. (1993), ‘Bayesian analysis of binaryand polychotomous response data’,Journal of the
American Statistical Association 88(422), 669–679.

Berger, B. (1985),Statistical Decision Theory and Bayesian Analysis, Springer-Verlag, New York.
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